

Introduction and selection of ionizing rays for polymers treatments

March, 15-16th 2016 Nürtingen, Germany, by

conserver Réticuler

Stériliser

Service company for the treatment by ionizing radiations:

Electron Beam (EB or accelerated electrons)

• n°1 in

Europe

France, n°2 in

• SME of 70 p

Gamma Rays (photons from Cobalt 60)

Electron beam Linac Accelerator

Figures :

- Activity dating back to the creation of Conservatome (Dagneux) in 1956
- Created in 1993 by merging

Activities:

- Sterilization of medical devices and pharmaceuticals: 60 %
- Aseptization of packagings and raw materials: 20 %
- Radiation Chemistry (cross-linking, grafting, radiolysis studies ...): 15 %
- Food Ionization: 1 à 5 %

Cobalt 60 source

Radiation processing of polymers

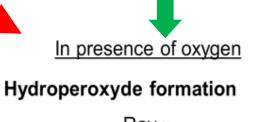
Radiation processing with ionizing rays enables different types of chemical modification of polymers, <u>without adding</u> <u>an initiator</u>:

- Polymerization of resins, composites, inks, varnishes, adhesives ... (see SUN presentation of Dr. Linzer)
- Crosslinking of thermoplastics (PE, PA) (see Dr. Gohs presentation)
- Functionalization of polymer substrates by Grafting (see Fraunhofer presentation by M. Weidauer)

Radiation processing of polymers

Depending on the objective of modification, we can choose a strategy of radiation chemistry :

Chemistry directly triggered under the rays: **simultaneous irradiation**


Without oxygen (N₂, Ar ...)

Ray γ

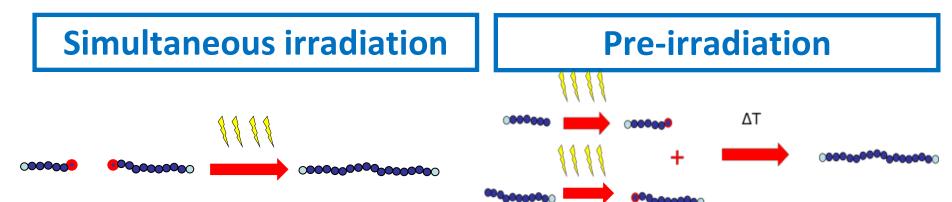
Initiation $S_P \longrightarrow S_P$ $S_P + M \longrightarrow S_{PM}$

Propagation S_{PM}^{\bullet} + nM $\longrightarrow S_{PMn+1}^{\bullet}$

Le Moël, S. A. and C. Aymes-Chodur Journal of Polymer Science Part B: 2001 **39**(13): 1437-1448.

 $S_{PH} + O_2 \xrightarrow{Ray \gamma} S_{POOH}$ Thermal decomposition

 $S_{POOH} \longrightarrow S_{PO} + OH$ Initiation $S_{PO} + M \longrightarrow S_{POM}$ Propagation $S_{POM} + nM \longrightarrow S_{POMD+14}$


Free radicals can be created

previously and use later after

reactivation: pre-Irradiation

Strategy of radiation chemistry

Currently use for **polymerization**, crosslinking and on-line grafting,

- One-step immediate reaction
- [©] Higher yield
- In case of radiation sensitive polymers, promote addition vs chain breakage
- Substantial investment, except if use of sealed emitters.

Currently use for crosslinking of polymer alloys and for grafting

2-steps reaction

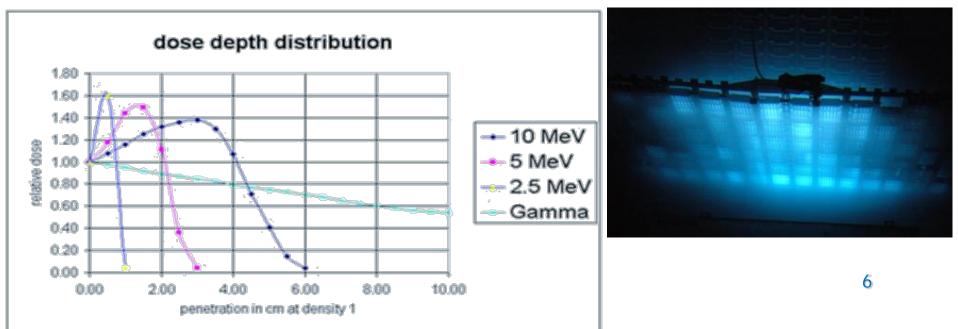
🙁 Lesser yield

Higher control of secondary reactions (chain breakage)
Generally possible on existing facilities (services company).

For example, the reactivation can be operated in a extruder.

Radiation technologies

Gamma Rays:


- Products generally process with an overhead conveyor, adapted to large products (1 m).
- Low dose rate = time for secondary reactions
 → in presence of oxygen, adapted for

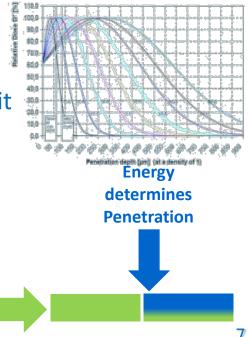
 PRE IRRADIATION strategy

• Very high penetration due to the electromagnetic nature of the photons emitted by a cobalt 60 source.

Radiation technologies

Electron beam:

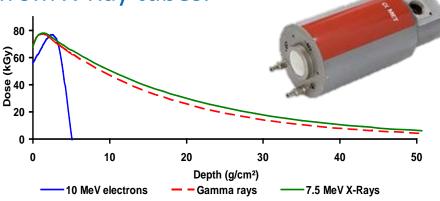
• Products generally process continuously under the beam.

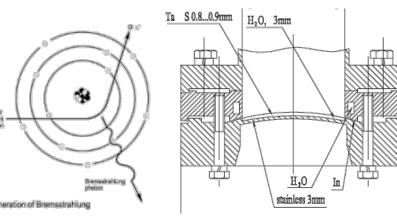


Power

determines Throughput

- Penetration is correlated to the energy of the incident electrons
- Treatment dose = quantity of electrons per surface unit measured in Gray (1 Gray = 1 Joule / kg = 1 W.s / kg)
- Dose = k . beam current / product speed (at given energy)
- Treatment parameters are electrically controlled
- Cold process (temp rise = 2,4°C / 10kGy)


(See Electron Beam presentation of Dr Bielmann)



Radiation technologies

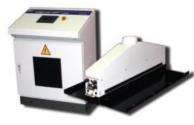
X Rays:

- Generated by electrons decelerated (bremsstrahlung) in high atomic number material (generally Tantalum), - EB @150kW \approx 12kW X-rays \approx 1MCi, need high power EB to compete with large gamma centers,
- Dose can be adjusted (rotation, speed adjustment, collimators,...),
- Some applications directly derived from X-Ray tubes.

Summary

Radiation		Penetration depth	Incident Energy	Power	Dose rate
EB	家在这一天 3 24美	Medium (from several µm to several cm)	80 keV to 10 MeV (low / medium / high)	1 kW to 700kW	kGy. Seconds
Gamma	RENT	High (≈ 1m)	Co ⁶⁰ : 1,17 and 1,33 MeV	Source activity (in Curies Ci)	From 0,5 to 25 kGy/h (2 kGy/h in average on an industrial facility)
RX ^{targe}		High (≈ 1m)	Correlated to the energy of the EB used to generate RX	12kW for an EB of power 150kW	kGy. Minutes

RADSYS


Offering high level expertise in

in association with

InfraRed (IR/NIR)

Ultra Violet (UV)

Electron Beam (EB)

Process Development

- Process Consulting
- Proof of Concept Trials
- Process Development
- Short-Run Production

Process Integration Taylor-made solutions Machine Maintenance Customer Service Training

Thank you for attention

Sophie ROUIF IONISOS Parc Dombes Côtière Activités 01120 Dagneux sophie.rouif@ionisos.fr

Francis MARTIN NACRE 21 rue des Alouettes 78700 Conflans Sainte-Honorine fm@nacre.fr

